Tuesday, 7 November 2017

Sentrert Bevegelig Gjennomsnitt Metode


Når du beregner et løpende bevegelig gjennomsnitt, er gjennomsnittet i midtperioden fornuftig. I forrige eksempel beregner vi gjennomsnittet av de første 3 tidsperiodene og plasserte det ved siden av periode 3. Vi kunne ha plassert gjennomsnittet midt i tidsintervall på tre perioder, det vil si ved siden av periode 2. Dette fungerer bra med ulike tidsperioder, men ikke så bra for jevne tidsperioder. Så hvor skulle vi plassere det første glidende gjennomsnittet når M 4 Teknisk sett ville det bevegelige gjennomsnittet falle på t 2,5, 3,5. For å unngå dette problemet, glatter vi MAs ved hjelp av M 2. Dermed glatter vi de jevne verdiene. Hvis vi gjennomsnittlig et jevnt antall vilkår, må vi glatte de jevne verdiene. Følgende tabell viser resultatene ved å bruke M 4. Den enkleste tilnærmingen ville være å ta gjennomsnittet fra januar til mars og bruk det for å estimere salg av april8217: (129 134 122) 3 128 333 På grunnlag av salget fra januar til mars forutsetter du at salget i april vil være 128 333. Når April8217s faktiske salg kommer inn, vil du da beregne prognosen for mai, denne gangen bruker februar til april. Du må være i samsvar med antall perioder du bruker til å flytte gjennomsnittlig prognose. Antall perioder du bruker i dine gjennomsnittlige prognoser er vilkårlige. Du kan bare bruke to perioder, eller fem eller seks perioder uansett hva du ønsker å generere prognosene dine. Tilnærmingen ovenfor er et enkelt bevegelige gjennomsnitt. Noen ganger kan nyere salg i måneder8217 være sterkere påvirkning av det kommende month8217s salg, så du vil gi de nærmere månedene mer vekt i prognosemodellen din. Dette er et vektet glidende gjennomsnitt. Og akkurat som antall perioder, er vektene du tildeler, rent vilkårlig. Let8217s sier at du ønsket å gi March8217s salg 50 vekt, februar8217s 30 vekt og januar8217s 20. Deretter vil prognosen for april være 127,000 (122,50) (134,30) (129,20) 127. Begrensninger av bevegelige gjennomsnittsmetoder Flytende gjennomsnitt regnes som en 8220smoothing8221 prognose teknikk. Fordi du8217 tar et gjennomsnitt over tid, myker du (eller utjevner) virkningen av uregelmessige hendelser i dataene. Som et resultat kan effektene av sesongmessighet, konjunktursykluser og andre tilfeldige hendelser dramatisk øke prognosen feil. Ta en titt på en full år8217s verdi av data, og sammenlign et 3-års glidende gjennomsnitt og et 5-års glidende gjennomsnitt: Legg merke til at i dette tilfellet at jeg ikke lagde prognoser, men heller sentrert de bevegelige gjennomsnittene. Det første tre måneders glidende gjennomsnittet er for februar, og det er gjennomsnittlig januar, februar og mars. Jeg gjorde også lignende for 5-måneders gjennomsnittet. Nå ser du på følgende diagram: Hva ser du Er ikke tremåneders glidende gjennomsnittsserien mye jevnere enn den faktiske salgsserien Og hva med femmåneders glidende gjennomsnitt It8217s jevnere. Derfor, jo flere perioder du bruker i glidende gjennomsnitt, jo jevnere din tidsserie. Derfor, for prognoser, kan et enkelt glidende gjennomsnitt ikke være den mest nøyaktige metoden. Flytte gjennomsnittlige metoder viser seg å være ganske verdifulle når man prøver å trekke ut sesongmessige, uregelmessige og sykliske komponenter i en tidsserie for mer avanserte prognosemetoder, som regresjon og ARIMA, og bruken av bevegelige gjennomsnittsverdier ved dekomponering av en tidsserie vil bli adressert senere i serien. Bestemme nøyaktigheten til en flytende gjennomsnittsmodell Vanligvis vil du ha en prognosemetode som har minst feil mellom faktiske og forventede resultater. En av de vanligste målene for prognose nøyaktighet er gjennomsnittlig absolutt avvik (MAD). I denne tilnærmingen tar du den absolutte verdien av forskjellen mellom period8217s faktiske og forventede verdier (avviket) for hver periode i tidsseriene som du genererte en prognose for. Så gjennomsnittlig de absolutt avvik, og du får et mål på MAD. MAD kan være nyttig når du bestemmer deg for antall perioder du gjennomsnittlig, og eller hvor mye vekt du legger på hver periode. Vanligvis velger du den som resulterer i laveste MAD. Here8217 er et eksempel på hvordan MAD beregnes: MAD er bare gjennomsnittet på 8, 1 og 3. Flytte gjennomsnitt: Recap Når du bruker bevegelige gjennomsnitt for prognoser, husk: Flytte gjennomsnitt kan være enkelt eller vektet Antall perioder du bruker til din gjennomsnittlig og eventuelle vekter du tildeler hver, er strengt vilkårlig. Flytende gjennomsnitt utjevner uregelmessige mønstre i tidsseriedata, jo større antall perioder som brukes for hvert datapunkt, desto større utjevningseffekt. På grunn av utjevning, prognose neste måned8217s salg basert på siste månedene8217s salg kan resultere i store avvik på grunn av sesongmessige, sykliske og uregelmessige mønstre i dataene og Utjevningskapasiteten til en bevegelig gjennomsnittlig metode kan være nyttig ved å dekomponere en tidsserie for mer avanserte prognosemetoder. Neste uke: Eksponensiell utjevning I neste uke8217s Forecast Forecast Friday. Vi vil diskutere eksponensielle utjevningsmetoder, og du vil se at de kan være langt bedre enn å flytte gjennomsnittlige prognosemetoder. Fortsatt don8217t vet hvorfor våre prognose fredag ​​innlegg ser ut på torsdag Finn ut på: tinyurl26cm6ma Liker dette: Postnavigasjon Legg igjen et svar Avbryt svar Jeg hadde 2 spørsmål: 1) Kan du bruke den sentrert MA-tilnærmingen til å prognose eller bare for å fjerne sesongmessighet 2) Når du bruker den enkle t (t-1t-2t-k) k MA for å prognose en periode fremover, er det mulig å prognose mer enn 1 periode framover. Jeg antar da at prognosen din ville være en av poengene som fôr til neste. Takk. Elske infoen og dine forklaringer I8217m er glad for at bloggen I8217m er sikker på at flere analytikere har brukt den sentrale MA-tilnærmingen til prognoser, men jeg ville ikke, siden denne tilnærmingen gir et tap av observasjoner i begge ender. Dette knytter seg da til ditt andre spørsmål. Vanligvis er simpel MA brukt til å prognose bare en periode framover, men mange analytikere 8211 og jeg for noen ganger 8211 vil bruke min foreløpige prognose for en periode som en av inngangene til andre periode fremover. Det er viktig å huske at jo lenger inn i fremtiden du forsøker å prognose, desto større er risikoen for prognosefeil. Dette er grunnen til at jeg ikke anbefaler sentrert MA for prognose 8211. Tapet av observasjoner på slutten betyr at du må stole på prognoser for de tapte observasjonene, så vel som perioden (er) foran, så det er større sjanse for prognosefeil. Lesere: You8217 er invitert til å veie inn på dette. Har du noen tanker eller forslag på denne Brian, takk for din kommentar og dine komplimenter på bloggen. Fint initiativ og fin forklaring. It8217 er veldig hjelpsomme. Jeg prognose egendefinerte kretskort for en kunde som ikke gir noen prognoser. Jeg har brukt glidende gjennomsnitt, men det er ikke så nøyaktig som industrien kan gå opp og ned. Vi ser mot midten av sommeren til slutten av året at frakt pcb8217 er oppe. Da ser vi i begynnelsen av året bremser nedover. Hvordan kan jeg være mer nøyaktig med mine data Katrina, fra det du fortalte meg, ser det ut til at ditt trykte kretskortsalg har en sesongbestemt komponent. Jeg tar opp sesongmessighet i noen av de andre prognosen fredag ​​innleggene. En annen tilnærming du kan bruke, som er ganske enkelt, er Holt-Winters algoritmen, som tar hensyn til sesongmessighet. Du kan finne en god forklaring på det her. Pass på å avgjøre om årstidens mønster er multiplikativ eller additiv, fordi algoritmen er litt forskjellig for hver. Hvis du plotter dine månedlige data fra noen år og ser at sesongvariasjoner på samme tidspunkter ser ut til å være konstant år over år, så er sesongmessigheten additiv hvis sesongvariasjonene over tid ser ut til å øke, så sesongmessigheten er multiplikativ. De fleste sesongbestemte tidsserier vil være multiplikative. Hvis du er i tvil, antar du multiplikativ. Lykke til Hei, Mellom den metoden:. Nave Forecasting. Oppdaterer gjennomsnittet. Flytte gjennomsnittet av lengden k. Enten vektet Flytende Gjennomsnittlig lengde k ELLER Eksponentiell utjevning Hvilken av disse oppdateringsmodellene anbefaler du at jeg bruker for å prognose dataene. Etter min mening tenker jeg på Moving Average. Men jeg skjønner ikke hvordan du gjør det klart og strukturert. Det avhenger egentlig av mengden og kvaliteten på dataene du har, og din prognosehorisont (langsiktig, mellomlang eller kort sikt). Metode for bevegelsesmålinger Kommentarer er av Anta at det er tidsperioder betegnet og tilsvarende verdier av variabel er. Først av alt må vi bestemme perioden for de bevegelige gjennomsnittene. For korte tidsserier bruker vi periode på 3 eller 4 verdier. For lang tidsserier kan perioden være 7, 10 eller mer. For kvartalsvise tidsserier beregner vi alltid gjennomsnitt som tar 4 fjerdedeler av gangen. I månedlige tidsserier beregnes 12 måneders glidende gjennomsnitt. Anta at gitte tidsserier er i år, og vi har bestemt oss for å beregne 3 års glidende gjennomsnitt. De bevegelige gjennomsnittene som er oppgitt, beregnes som nedenfor: Slideshare bruker informasjonskapsler for å forbedre funksjonalitet og ytelse, og for å gi deg relevant annonsering. Hvis du fortsetter å surfe på nettstedet, godtar du bruken av informasjonskapsler på denne nettsiden. Se vår brukeravtale og personvernregler. Slideshare bruker informasjonskapsler for å forbedre funksjonalitet og ytelse, og for å gi deg relevant annonsering. Hvis du fortsetter å surfe på nettstedet, godtar du bruken av informasjonskapsler på denne nettsiden. Se vår personvernerklæring og brukeravtale for detaljer. Utforsk alle favorittemner i SlideShare-appen Få SlideShare-appen til å lagre for senere, selv frakoblet Fortsett til mobilnettstedet Opplastingslogg Registrering Dobbeltklikk for å zoome ut Flytte gjennomsnittlig metode Del denne SlideShare LinkedIn Corporation kopi 2017

No comments:

Post a Comment